Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Geospat Health ; 18(1)2023 05 25.
Article in English | MEDLINE | ID: covidwho-20237362

ABSTRACT

COVID-19 is the most severe health crisis of the 21st century. COVID-19 presents a threat to almost all countries worldwide. The restriction of human mobility is one of the strategies used to control the transmission of COVID-19. However, it has yet to be determined how effective this restriction is in controlling the rise in COVID-19 cases, particularly in small areas. Using Facebook's mobility data, our study explores the impact of restricting human mobility on COVID-19 cases in several small districts in Jakarta, Indonesia. Our main contribution is showing how the restriction of human mobility data can give important information about how COVID-19 spreads in different small areas. We proposed modifying a global regression model into a local regression model by accounting for the spatial and temporal interdependence of COVID-19 transmission across space and time. We applied Bayesian hierarchical Poisson spatiotemporal models with spatially varying regression coefficients to account for non-stationarity in human mobility. We estimated the regression parameters using an Integrated Nested Laplace Approximation. We found that the local regression model with spatially varying regression coefficients outperforms the global regression model based on DIC, WAIC, MPL, and R2 criteria for model selection. In Jakarta's 44 districts, the impact of human mobility varies significantly. The impacts of human mobility on the log relative risk of COVID-19 range from -4.445 to 2.353. The prevention strategy involving the restriction of human mobility may be beneficial in some districts but ineffective in others. Therefore, a cost-effective strategy had to be adopted.


Subject(s)
COVID-19 , Humans , Bayes Theorem , Indonesia/epidemiology
2.
Healthcare (Basel) ; 11(2)2023 Jan 10.
Article in English | MEDLINE | ID: covidwho-2199996

ABSTRACT

COVID-19 is the disease that has spread over the world since December 2019. This disease has a negative impact on individuals, governments, and even the global economy, which has caused the WHO to declare COVID-19 as a PHEIC (Public Health Emergency of International Concern). Until now, there has been no medicine that can completely cure COVID-19. Therefore, to prevent the spread and reduce the negative impact of COVID-19, an accurate and fast test is needed. The use of chest radiography imaging technology, such as CXR and CT-scan, plays a significant role in the diagnosis of COVID-19. In this study, CT-scan segmentation will be carried out using the 3D version of the most recommended segmentation algorithm for bio-medical images, namely 3D UNet, and three other architectures from the 3D UNet modifications, namely 3D ResUNet, 3D VGGUNet, and 3D DenseUNet. These four architectures will be used in two cases of segmentation: binary-class segmentation, where each architecture will segment the lung area from a CT scan; and multi-class segmentation, where each architecture will segment the lung and infection area from a CT scan. Before entering the model, the dataset is preprocessed first by applying a minmax scaler to scale the pixel value to a range of zero to one, and the CLAHE method is also applied to eliminate intensity in homogeneity and noise from the data. Of the four models tested in this study, surprisingly, the original 3D UNet produced the most satisfactory results compared to the other three architectures, although it requires more iterations to obtain the maximum results. For the binary-class segmentation case, 3D UNet produced IoU scores, Dice scores, and accuracy of 94.32%, 97.05%, and 99.37%, respectively. For the case of multi-class segmentation, 3D UNet produced IoU scores, Dice scores, and accuracy of 81.58%, 88.61%, and 98.78%, respectively. The use of 3D segmentation architecture will be very helpful for medical personnel because, apart from helping the process of diagnosing someone with COVID-19, they can also find out the severity of the disease through 3D infection projections.

SELECTION OF CITATIONS
SEARCH DETAIL